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Objectives 

This research aims at the optimization of the active layer of polysilicon films obtained using 
advanced excimer laser crystallization methods and of the resulting performance parameters of 
thin film transistors (TFTs) fabricated in such films. Such advanced TFTs are necessary for next 
generation large area electronics systems, which are now in the research and development 
phase. Specifically, the targets of the project are: 

- Evaluation of device parameter (a) hot carrier and (b) irradiation stress-induced degradation 
and identification of ageing mechanisms in TFTs fabricated in advanced excimer laser 
annealed (ELA) polycrystalline silicon films utilizing sequential lateral solidification (SLS) 
techniques. 

- Investigation of the influence of the polysilicon crystallization technique and the film 
thickness on TFT performance, defect densities and degradation for ELA technology 
optimization. 

- Investigation of polysilicon active layer defects using transient drain current analysis in ELA 
TFTs. 

- Investigation of effects of variations in TFT device structure and in the fabrication process on 
device performance and reliability. 

- Assessment of material properties of advanced ELA polysilicon TFTs using optical 
measurements. 

- Evaluation of bias stress-induced instabilities in solid phase crystallized (SPC) TFTs. 
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RESEARCH RESULTS 
 
A.  Hot carrier stress investigation in ELA TFTs 

TFT degradation under hot carrier stress (HCS) was investigated for devices fabricated in 
advanced 2-shot SLS ELA polysilicon films. TFTs with different channel widths and orientations 
relative to the grain boundary directions were compared. It was observed that the degradation 
of device parameters during HCS experiments was dependent on the channel width. Fig.III.4.1 
shows the Vth evolution with stress time for a stress condition (VGS,stress, VDS,stress) = (3 V, 6 V), 
for X-directed TFTs. We observe an increase of ΔVth for increasing stress time as a common 
behavior in all devices except the narrower ones, which exhibit an initial decrease and then an 
increase. The amplitude of the positive ΔVth shift scales up with width. Narrower devices (W of 4 
and 8 μm) demonstrate a less pronounced ΔVth positive shift. The degradation behavior of Y-
directed TFTs was in accordance with observations in X-directed devices. We also observed 
that devices with W = 16, 32 and 100 μm exhibit an initial increase in Gm,max (transconductance 
“overshoot”) and then a reduction after a maximum Gm,max value. 
In order to investigate the width scaling of the additional energy source during hot-carrier 
experiments, we proposed that two width-dependent effects are involved, the floating body 
effect (FBE) and the self-heating effect (SHE). Concerning floating-body effects, we performed 
IDS-VGS electrical measurements with various drain voltages on wide and narrow devices, as 
shown in Fig.III.4.2. For higher drain voltages the parasitic bipolar transistor is activated giving 
rise to an abrupt drain current increase even at negative values of gate voltage (Fig.III.4.2), 
which indicates presence of FBEs. By performing various rates of drain voltage sweeps at VGS = 
3 V we could observe no significant increase or decrease of the drain current resulting from self-
heating effects. However, it is possible that a temperature gradient may arise from the drain 
current, which is not observable in the output characteristics and at the same time may provide 
additional energy to the carriers; thus, the presence of SHEs is not excluded. 
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Fig. III.4.1: Threshold voltage variation versus 
stress time for X-directed polysilicon TFTs 
with various channel widths 

Fig. III.4.2: Transfer characteristics of polysilicon 
TFTs with channel widths of 100 μm and 16 μm for 
various drain-bias voltages. 

 
Moreover, degradation phenomena due to HCS were investigated in double gate TFTs. We 
varied the HCS conditions at the front-gate channel by applying various back-gate voltages. We 
demonstrated that severe degradation phenomena may occur at the back interface depending 
on the back-gate voltage during stress. We observed that: 

 Electrical stress with negative back-gate voltage enhances hot-hole injection in the 
back-gate oxide; hot-electron induced phenomena at the front polysilicon / SiO2 
interface also occur (Fig.III.4.3, 4). 

 Electrical stress with positive back-gate voltage enhances hot-electron injection in the 
back-gate oxide; hot-hole injection occurs in the front oxide, combined with front 
interface state generation (Fig.III.4.5, 6). 



  
Fig. III.4.3: Threshold voltage as a 
function of back-gate voltage for various 
durations under stress condition with 
VGB,stress= - 3 V. 

Fig. III.4.4: Schematic of top gate device and 
the degradation behavior for negative back-
gate bias during stress. 

  
Fig. III.4.5: Threshold voltage as a 
function of back-gate voltage for various 
durations under stress condition with 
VGB,stress= 3 V. 

Fig. III.4.6: Schematic of top gate device and 
the degradation behavior for positive back-
gate bias during stress. 

In Table I we summarize the different degradation mechanisms for double gate devices for 
three stress regimes that were applied. 

Stress 
VGB,stress [V] 

Front interface degradation mechanisms Back interface degradation mechanisms 

- 3 V 
State generation by hot-electrons at the 

polysilicon/SiO2 interface and/or within the 
grain boundaries 

Severe hot-hole injection and associated 
interface state generation 

0 V 
State generation by hot-electrons at the 

polysilicon/SiO2 interface and/or within the 
grain boundaries 

Mild hot-hole injection 

+ 3 V Severe hot-hole injection and interface state 
generation 

Hot electron injection and associated 
interface-state generation 

Table I: Degradation mechanisms for double gate ELA TFTs under hot carrier stress. 
 
B.  Characterization of experimental ELA and IMEL-fabricated TFTs 

Advanced variations of SLS ELA crystallization (termed 2N-shot, M×N, Dot) have been applied 
for pilot fabrication of TFTs at Sharp; results from their characterization were presented in the 
2006 report. This work was recently expanded to their reliability investigation, through the 
application of DC stress. We concluded that the different microstructural properties of the films 
resulted in different degradation behavior, both for the threshold voltage (Fig.III.4.7) and for the 
maximum transconductance (Fig.III.4.8). 
Furthermore, we fabricated polysilicon TFTs at IMEL (with ELA crystallization at Sharp or SPC 
at IMEL) to probe the best technique for gate dielectric deposition and the effect of the 
crystallization technique on TFT performance and reliability. The mean performance parameters 
of all the fabricated TFTs can be seen in the following Table II. 
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SAMPLE POLY-
SILICON 

GATE 
DIELECTRIC Vth (V) μ (cm2/V·sec) Dts (eV-1·cm-2) Νt (cm-3) 

T1 D/S PECVD 
SiO2 

1,32 0,37 51,12 91,07 2,80·1012 8,97·1011 5,33·1011 2,27·1011 

T3 2-shot PECVD 
SiO2 

2,11 1,00 32,02 65,99 3,24·1012 1,25·1012 4,79·1011 2,40·1011 

T4 2-shot TEOS SiO2 0,79 0,72 82,44 104,33 2,16·1012 1,07·1012 3,34·1011 2,33·1011 

T7 SPC TEOS SiO2 7,20 8,56 10,85 11,09 7,81·1012 7,54·1012 9,23·1011 9,54·1011 

Table II: Performance parameters of TFTs fabricated at IMEL. 

As far as reliability is concerned, we observed more severe degradation for the TFTs with 2-shot 
SLS ELA polysilicon (Fig.III.4.9), in comparison to ones with directional SLS ELA polysilicon, 
ascribed to the increased surface roughness of the film. Also, we observed different degradation 
mechanisms for TFTs with gate dielectric deposited with different techniques (Fig.III.4.10), 
ascribed to differences in the dielectric film quality. 
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In an effort to investigate the use of a high-k material, HfO2, as gate dielectric in TFT fabrication, 
we fabricated MOS capacitors with HfO2 dielectric, to investigate the best HfO2 sputter 
deposition and post-treatment conditions, and also determine which gate material would be 
suitable for this dielectric. Finally, we determined that the best performing MOS capacitors were 
the ones utilizing a thin SiO2 oxide between the silicon and the HfO2 film. We tried three 
different gate electrode materials, poly-Si, Al and W, and found that poly-Si is not a suitable 
material, since the capacitors exhibited high parasitic capacitances (Fig.III.4.11) and very low 
reliability. W gate samples performed acceptably (Fig.III.4.12), showing however some 
hysteresis, indicating charge trapping. 

Fig. III.4.9: Evolution of ΔVth and ΔS with stress time 
for differently crystallized poly-Si TFTs. 

Fig. III.4.10: Evolution of ΔGm,max/Gm,max0 with stress 
time for differently crystallized poly-Si TFTs. 

Fig. III.4.7: Evolution of ΔVth with stress time for 
differently crystallized poly-Si TFTs. 

Fig. III.4.8:  Evolution of ΔGm,max/Gm,max0 with stress 
time for differently crystallized poly-Si TFTs. 
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C.  Low temperature and transient current characterization 

In the past year this research, carried out in collaboration with the University of Athens, was 
expanded in the investigation of the thermally activated mechanisms that determine the 
electrical properties of polysilicon TFTs (only a small part of the collaborative research at UoA is 
covered here). Temperature seems to have negligible effect on the ON regime, but significant 
influence below threshold, as indicated from the transfer characteristics in Fig.III.4.13; the OFF 
current and the subthreshold swing are thermally activated. The threshold voltage decreases 
with increasing temperature (Fig.III.4.14); in non-crystalline devices, the excitation of trapped 
carriers from band gap states into the conduction band plays a significant role, because the rise 
in temperature increases the free carrier density, leading to channel formation at lower gate 
voltages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In polysilicon, carrier trapping, emission and thermal generation are determined by a continuous 
distribution of band gap states, which consists of band tails and deep traps. As the contribution 
of each state is thermally activated, the effective generation lifetime will also be, with effective 
activation energy EA, which will depend on the distribution of the density of states. This allows 
the determination of EA from the Arrhenius plot of the leakage current, in Fig.III.4.15; EA was 
0.20 eV and 0.56 eV for the 100 nm and 30 nm thick devices, respectively. The above values 
suggest that in thicker films the generation takes place mainly through deeper states, while in 
thinner films the contribution of tail states becomes significant. As tail states are mainly 
introduced due to the lack of periodicity in the crystal potential, by the presence of grain 
boundaries, a large density of tail states is expected in thinner SLS polysilicon films where the 
grains are smaller. 
 
 
 
 

Fig. III.4.11: Capacitance-Voltage characteristics 
for HfO2 capacitors with poly-Si as gate electrode. 

Fig. III.4.12: Capacitance-Voltage characteristics 
for HfO2 capacitors with W as gate electrode. 
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Fig. III.4.14:  Temperature dependence of threshold 
voltage for TFTs in 30 nm and 100 nm thick polysilicon 
films
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In TFTs the subthreshold swing is temperature dependent primarily due to the increase in the 
intrinsic carrier concentration, while the Fermi level and mobility variations are also involved. In 
bulk MOSFETs, a linear swing increase with increasing temperature is expected due to the 
diffusion nature of the current. In polysilicon TFTs the generation of carriers takes place through 
grain boundary trap states. In principle, the generation mechanism in the depletion layer is the 
same with the one for the leakage current. Therefore, the activation energies, derived from the 
subthreshold swing, must have similar values and follow the same trend, with respect to the film 
thickness, with the ones obtained from the OFF state leakage current. Comparing (Fig.III.4.16) 
the values of the activation energies we find that for TFTs in 100 nm films the activation 
energies are practically the same. In contrast, in the case of 30 nm thick film devices the 
activation energies are different; lower values are obtained from the temperature dependence of 
the subthreshold swing. This difference may be attributed to the effect of coupling of the front 
and back interfaces, which is directly affected by the inefficient screening from body defects, as 
the electron mean free path is estimated in the range of 5–30 nm that is close to the film 
thickness. Such a situation seems not to occur for the 100 nm devices, where the polysilicon 
film thickness is much larger than the electron mean free path. 
The temperature dependence of TFT parameters (leakage current, subthreshold swing) was 
thus found to stem from the same thermally activated carrier generation mechanism through 
grain boundary trap states, which determines device operation; deeper states contribute more 
to the generation in 100 nm films than in 30 nm ones. The leakage current, the exponential 
increase of the subthreshold swing and the switch-ON overshoot transient current amplitude 
exhibit the same temperature onset; the threshold temperature of those thermally activated 
processes is found to be thickness dependent, indicating the varying contribution of trap states. 
The dependence of thermally activated mechanisms, which are strongly related to material 
properties and which shape the electrical characteristics, on film thickness suggests that TFT 
operation is strongly related to the polysilicon film properties, in particular to the contribution of 
trap states. 
 
 
D.  Irradiation investigation 

The γ-irradiation induced degradation of SLS ELA TFTs has also been studied, in collaboration 
with the University of Nis. During 2007, while the effect of polysilicon film thickness was further 
explored, the research was expanded to investigation of the effect of device direction relative to 
the preferred direction of directional SLS ELA polysilicon films, as well as to the assessment of 
the grain boundary trap state density. Fig.III.4.17 shows the threshold voltage shift after 
irradiations of 100 Gy and 500 Gy, for various film thicknesses; TFTs fabricated in intermediate 
thickness films seem to have higher immunity to irradiation. The Vth shift strongly depends on 
the gate voltage applied during irradiation for TFTs in 30 nm and 100 nm polysilicon films, while 
for TFTs in 50 nm films the influence of this gate bias is no so pronounced, especially in devices 
oriented with the current flow orthogonal to the elongated grains. 
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Fig. III.4.15: Temperature dependence of drain 
leakage current for TFTs in 30 nm and 100 nm thick 
films. 

Fig. III.4.16: Exponential terms obtained in the subthreshold 
swing increase with temperature for 30 nm and 100 nm TFTs. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 18 shows the electron mobility for TFTs in 50 nm films oriented in parallel or perpendicularly 
(90º) to the preferred grain direction. The weak dependence of mobility on irradiation dose, as 
well as on gate bias during irradiation, which is observed, could be attributed to domination of 
scattering mechanisms and trapping at grain boundaries over scattering on charged interface 
defects. This conclusion can be further supported from the comparison of the mobility in devices 
having current flow direction orthogonal to the grain boundaries; in these TFTs the mobility is 
not only low and independent of γ-irradiation dose, but also almost independent of applied gate 
bias during irradiation. 
TFTs in 50 nm polysilicon films exhibit a small irradiation-induced degradation of the oxide 
trapped charge density (�Not), which is significantly smaller in devices having orientation at 90o 
with respect to the preferred grain direction, as shown in Fig.III.4.19; moreover, for these 
devices there is almost no effect of gate bias application during irradiation. Besides the grain 
size, the quality of polysilicon films is also defined by trap states at grain boundaries, which 
influence the mobility at higher gate voltages. Using the procedure described by Proano et al 
(IEEE TED-36, 1915, 1989), a modification of the Levinson method), the density of grain-
boundary trap states (NGBT) in virgin and stressed devices can be determined from the slopes of 
the straight lines of the plots shown in Fig.III.4.20. As can be seen, virgin TFTs have NGBT = 3-
5×1011 cm-2, while γ-irradiation generates new traps at grain-boundaries, degrading the device 
parameters. Fig.III.4.21 shows the shift in NGBT against the irradiation dose for TFTs (parallel to 
grains) in 30, 50 or 100 nm films. TFTs in 100 nm films are much less resistant to irradiation 
when a gate bias is applied for duration of it. Fig.III.4.22 shows the NGBT against irradiation dose 
for TFTs in 50 nm films oriented in parallel or vertically to the elongated grains; the effect of an 
applied gate bias during irradiation is not significant here. While the difference is small, the 
vertically oriented devices are more resistant to γ-irradiation. 
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Fig. III.4.17: Dependence of threshold voltage shift 
on poly-Si film thickness for doses of 100 & 500 Gy. 

Fig. III.4.18: Carrier mobility behavior of two groups of 
irradiated TFTs having different direction of current flow. 

Fig.III.4.19:Oxide trapped charge density for irradiated 
TFTs having different direction of current flow. 

Fig. III.4.20:Typical graph for grain boundary trap-
state density extraction of stressed TFT devices. 
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E.  Material / optical characterization 

An optical characterization of three differently crystallized SLS ELA polysilicon films was 
performed. TFTs fabricated in these three types of films (directional, 2-shot and 26-shot) have 
also been electrically characterized. The transmission spectra of the polysilicon films were 
obtained (Fig.III.4.23). We fitted these spectra with a software developed here, utilizing the 
Tauc-Lorentz model for the refractive index of the material, in order to extract the real 
(Fig.III.4.24) and the imaginary part of the refractive index of the films. This way, structural 
differences between the various polysilicon films could be probed. Through the optical 
parameters extracted, a correlation between structural and electrical characteristics will be 
attempted. 
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Fig. III.4.23: Transmission spectra of the SLS 
ELA poly-Si films and application of Tauc-
Lorentz model. 

Fig. III.4.24: Refractive index n of SLS ELA poly-Si 
films, as obtained by the Tauc-Lorentz model. 
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Fig. III.4.22: Density of grain boundary traps for 
irradiated TFTs having different direction of current flow. 
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