This is a rather complicated example which has 2 atoms in plane, and it is doing decimation on both sides while empty spheres are included for the semiconductor. This is to demonstrate how you set up the lattice in case of decimation and if you need to decimate more than one atom. Try to visualize the lattice.
6 LMAX=3 NSPIN=2 NATYP= 16 KMT=3 ** Description of lattice** 7 ALATBASIS= 10.41 1.0 1.0 lattice constants 8 BASISCALE= 1.0 1.0 1.0 scaling factor 10 BRAVAIS 11 0.500000 0.500000 0.000000 12 -0.500000 0.5000000 0.000000 13 0.000000 0.0000000 0.000000 ----------------------------------- 14 NAEZ= 16 NEMB=0 NEMBZ=0 KAOEZ=0 15 CARTESIAN= f 16 RBASIS 17a 0.00000000 0.00000000 0.00000000 17b 0.50000000 0.50000000 0.00000000 17c 0.50000000 0.00000000 0.25000000 17d 0.00000000 0.50000000 0.25000000 17e 0.00000000 0.00000000 0.50000000 17f 0.50000000 0.50000000 0.50000000 17g 0.50000000 0.00000000 0.75000000 17h 0.00000000 0.50000000 0.75000000 17j 0.00000000 0.00000000 1.00000000 17k 0.50000000 0.50000000 1.00000000 17l 0.50000000 0.00000000 1.25000000 17m 0.00000000 0.50000000 1.25000000 17n 0.00000000 0.00000000 1.50000000 17o 0.50000000 0.50000000 1.50000000 17p 0.50000000 0.00000000 1.75000000 17q 0.00000000 0.50000000 1.75000000 18 SCALING= 1.0 1.0 1.0 ----------------------------------- 19 INTERFACE= T 20 NRIGHTHO= 10 NLBASIS= 2 21 NLEFTHOS= 10 NRBASIS= 2 22 LEFTBASIS x y z refpot 23 0.00000000 0.50000000 -0.250000 1 23a 0.50000000 0.00000000 -0.250000 2 24 RIGHBASIS 25 0.00000000 0.00000000 2.00000 1 25a 0.50000000 0.5000000 2.00000 2 ----------------------------------- 26 ZPERIODL= -0.50000000 0.00000000 -0.250000000 27 ZPERIODR= 0.50000000 0.00000000 0.250000000
We also give the atomic information for this case notice that the parent lattice is bcc, this means that the tb-clusters are bcc!
29 ATOMINFO 30 Z LMXC KFG CLS REFPOT NTC FAC IRNS RMT WEIGHT 31a 26.0 1 3 3 0 0 1 1 1 1.00 208 2.00 1.00 31b 26.0 1 3 3 0 0 1 1 1 1.00 208 2.00 1.00 31c 26.0 1 3 3 0 0 1 1 1 1.00 208 2.00 1.00 31d 26.0 1 3 3 0 0 1 1 1 1.00 208 2.00 1.00 31e 30.0 1 3 3 0 0 1 1 1 1.00 208 2.00 1.00 31f 0.0 0 0 0 0 0 1 1 1 1.00 208 2.00 1.00 31g 34.0 2 3 3 3 0 1 1 1 1.00 208 2.00 1.00 31h 0.0 0 0 0 0 0 1 1 1 1.00 208 2.00 1.00 31j 0.0 0 0 0 0 0 1 1 1 1.00 208 2.00 1.00 31k 30.0 1 3 3 0 0 1 1 1 1.00 208 2.00 1.00 31l 0.0 0 0 0 0 0 1 1 1 1.00 208 2.00 1.00 31m 34.0 2 3 3 3 0 1 1 1 1.00 208 2.00 1.00 31n 30.0 1 3 3 0 0 1 1 1 1.00 208 2.00 1.00 31o 0.0 0 0 0 0 0 1 1 1 1.00 208 2.00 1.00 31p 26.0 1 3 3 0 0 1 1 1 1.00 208 2.00 1.00 31q 26.0 1 3 3 0 0 1 1 1 1.00 208 2.00 1.00
The bulk calculation to produce the decimation files for the above should have a lattice
10 BRAVAIS 11 1.00000 1.000000 0.000000 12 -1.000000 1.0000000 0.000000 13 0.500000 0.5000000 0.500000 15 CARTESIAN= f 16 RBASIS 17a 0.00000000 0.00000000 0.00000000 17b 0.50000000 0.50000000 0.00000000Finally one small remark about supercell calculations. In the above Fe/ZnSe/Fe example you make a supercell by just using in line 19 INTERFACE=F and changing line 13 to 0.0 0.0 2.0 . Then your system is periodically repeated. Of course you should not use the DECIMATE running options.
The BCC bravais vectors are:
10 BRAVAIS 11 -0.500000 0.500000 0.500000 12 0.500000 -0.500000 0.500000 13 0.500000 0.500000 -0.500000 -----------------------------------